Challenges integrating seismic data with hydro-mechanical models:

Energy Leeds

Characterising and monitoring subsurface geological repositories

Doug Angus, School of Earth & Environment, University of Leeds d.angus@leeds.ac.uk

Outline

- Waste repository sites (geophysical context)
- Effective stress concept
- Multi-physics of porous deformable media
- Rock physics transforms
- Seismic monitoring
- Examples
- Monitoring strategies
- Challenges

Waste repository sites

Carbon Capture and Storage (CCS)

energy

Deep Geological Repository (DGR)

From "Nuclear waste – Can it be disposed of safely?" by HR Jones

Waste repository CCS

- Injectivity:
 - Storage capacity?
 - Injection rate?
 - Optimal injection strategies?
- Security:
 - Is CO₂ behaviour as predicted?
 - Is CO₂ safely stored?
- Monitoring
 - Can we monitor CO₂ volume?
 - Can we observe CO₂ migration?

ene

Waste repository DGR

- Siting:
 - Is site suitable and accessible?
 - Any unforeseen features not seen observed in siting survey?
- Security:
 - Is repository site behaving as predicted?
 - Is waste safely stored?
- Monitoring
 - Can we monitor geomechanical problems?

Multi-physics of porous deformable media

Geophysical imaging

- Seismic methods (elastic)
 - Time-lapse
 - Microseismic
- Electromagnetic (conductivity)
- Gravity (density)

- Geodesy
 - InSAR
 - GPS

Geophysical imaging

energy

1400 1900 2400 2900 3400 velocity (m/s)

Medical imaging

Seismic monitoring

S

g

Marine seismic Distance

water

v(z)=v0+kz

salt

(a)0

8

- Change in:
 - Saturation
 - Depth (km) ∽ ♪ Pressure/stress •
 - Mechanical properties ٠

energy

P-wave velocity change for true earth model

- What is measured:
 - Time differences
 - Amplitude differences
 - "Devil is in the detail" ^{4.1}

Extract time-lapse velocity changes

energy

Extract time-lapse amplitude changes

X (km) Estimated P-wave reflection amplitude (strength) changes using near-offset seismic data

Microseismicity:

- Weyburn CCS pilot

Microseismicity:

- Valhall reservoir
- Geomechanics and microseismicity

Geodesy (InSAR)

- Geomechanics and geodesy
- In Salah, Algeria CCS pilot

Instrumentation

- Conventional geophysical instrumentation:
 - ~ High quality
 - ~ Cost effective

ener

- ~ Work well for typical problems
- For waste repositories:
 - Need to be reliable over longer time spans (years to decades)
 - Need to be significantly more cost effective
 - May need to perform under hostile conditions (high temperatures, high pressures, highly corrosive environments)

Challenges

- Calibrated rock physics models
 - Multiphase fluids, anisotropy, geochemistry, thermal
 - More data, greater breadth of sampling
- More advanced models
 - Fractures and joints

ener

- Scaling (static to dynamic)
- Improved integration with fracture modelling and microseismic modelling

Bigger challenges

- Calibration
 - History match multi-physics models
 - Iterative approach between geophysics and hydromechanics
- Systematic approach to model building
 - Structure (i.e. geometry)

ener

- Meshing (i.e. gridding) water-tight geometries
- Constitutive models from rock and petro-physics with up-scaling

Energy Leeds